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Abstract. Surface tension, which acts on free boundaries, can change considerably the configuration of a free
boundary and influence the hydrodynamic characteristics of a deformable surface. The capillary film on the bor-
der of a fluid and gas can be regarded as a flexible momentless shell; however, the existence conditions of a flow
of capillary fluid with a free boundary and a flow about a flexible shell with analogous geometry may differ con-
siderably. In this paper problems of the two mentioned types with a single boundary condition are investigated
and it is shown which flow corresponds to each mathematical solution.
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1. Introduction

From a theoretical point of view capillary forces are most interesting. They can influence the
position of the cavitating-flow detachment point on the wetted boundary of a body. Such
problems were considered in [1], [2, Chapter 3], [3, Chapter 2].

The study of capillary tension in a supercavitating flow is quite difficult for the following
reasons: (1) the real cavity boundary is not a continuous curve but an interrupted and bub-
bly surface; (2) because of the tension, the cavity surface must be fastened at the edges of the
boundaries, but in the cavity itself it is free at its end; (3) capillary tension conflicts with the
minimal pressure in the cavity. The convex boundary of a cavity is directed along the pressure
gradient, but the convex boundary of a capillary surface is directed opposite to the gradient
∇p. This contradiction introduces a lot of complexity for the configuration of a cavity: bor-
ders can self-intersect or sharply change on separate positions and so on.

The most interesting from the point of view of applications are flows with free surfaces
when this contradiction is avoided without such intersections. Such conditions arise in prob-
lems on flows around bubbles, buckled flexible tubes, and jet veils. Some of these problems
will be considered here.

Joukovski [4] was the first to obtain an exact solution of a problem on the movement of a
bubble in a channel while taking into account capillary forces. Unfortunately, the solution is
valid only for some given ratio between the geometrical sizes of the bubble and the channel;
thus it is impossible to obtain the flow of a bubble in a boundless domain by passing to the
limit from the analytical result. McLeod [5] obtained an exact solution for a special case of
plane flow around a flexible tube. Kiselev [6], using Joukovski’s method, obtained some exact
solutions of problems with different configurations of walls connected to a flexible shell. The
problem of periodic nonlinear capillary waves of arbitrary amplitude was solved by Crapper
[7]. Kinnersley obtained exact solutions for large-amplitude capillary waves on sheets of fluid
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[8]. Recently Crowdy and Wegmann found an exact solution of circulatory flow around a bub-
ble [9, 10], which generalizes a solution of McLeod. Apparently, exact analytical solutions for
flows around shells are completely contained within these papers.

The flow of a capillary fluid from under a bounded linear wall is investigated in [11] in
a linear approximation. An asymptotic solution for small deformations was obtained in [12];
an iterative method of solution, based on the expansion of the unknown functions in power
series of terms containing a small parameter, was proposed in [13]. A detailed investigation
of the flow about flexible tubes and bubbles, and also that of a cavitating flow with capillary
tension on cavity shapes, were presented in [14–17]. A lot of effort has been devoted to the
study of nonstationary motion and deformation of bubbles (for example see [18–24]).

In this paper the steady shaping of shells or bubble surfaces will be investigated.

2. Statement of the problems

The kinematic condition on a boundary with surface tension is the same as the condition
without tension; the dynamic condition resulting from the Laplace law is

p0 −p=T
(

1
R1

+ 1
R2

)
, (1)

where p is the pressure in the fluid on one side of the free surface and p0 is that on the other
side or inside a tank with a flexible surface; T is the tension; R1 and R2 are the principal radii
of curvature. Further, we shall consider plane and axisymmetric flows only. Let v∞, p∞ be the
velocity and pressure at infinity and ρ the fluid density. If one introduces the dimensionless
parameter

µ= 2(p0 −p∞)
ρ v2∞

, (2)

which differs from the cavitation number by the sign only, then condition (1), due to the
Bernoulli integral, may be represented as follows:
• for axisymmetric flow along the x-axis

∓dβ
ds

+ cosβ
y

= ρ v2∞
2T

(
µ−1+ v2

v2∞

)
; (3)

• for plane flow

∓dβ
ds

= ρ v2∞
2T

(
µ−1+ v2

v2∞

)
, (4)

where β is the angle between the x-axis and the fluid-velocity vector (with modulus v) and s

is arc abscissa, changing along the border, ds=±
√
(dx)2 + (dy)2.

The sign “−” in (3), (4) corresponds to the positive direction along the boundary (when
ds is positive, the shift along the boundary occurs with the flow area remaining to the left),
the sign “+” to the negative direction.

Choosing “+” in (4) and substituting the velocity v= dϕ/ds (ϕ is the velocity potential),
the second condition is represented as

dβ
dϕ

= ρ v∞
2T

(
v

v∞
+ (µ−1)

(
v

v∞

)−1
)
. (5)
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Figure 1. Flexible shell with two fixed points (a), parmetric circle (b).

3. Flexible cylindrical shell in an unbounded flow

Let a flexible cylindrical shell with length 2L be fixed in two points located at a distance
l (l <L) from each other (Figure 1a). The shell is submerged into a uniform flow with velocity
v∞ at infinity directed along the x-axis. Only the bottom half of the flow is considered below.
The flow is symmetric with respect to the vertical straight line passing trough the middle point
C of the shell.

As stated above, on the surface of the shell the Laplace condition (4) with sign “+” should
be satisfied. If the drag of a free shell in a flow vanishes, it can be considered as a shell with
one fixed point A. In this case the flow should be determined by the parameter µ only. The
angle between the shell tangent and the x-axis is equal to −π/2 (see Figure 1a). If the shell
is fixed at two points A and B, then the angle βA is unknown and differs from −π/2. In that
case, to define βA, the ratio l/L should also be given.

To solve the problem, the flow domain defined on a physical z-plane is mapped onto the
interior of a unit circle of an auxiliary ζ -plane as shown in Figure 1b. The conformity of
points is clear from Figure 1.

The complex potential (its region of variation is the lower half-plane) is determined by
the function w= ia(ζ − ζ−1), where a is a real factor. On the arc of the circle (ζ = eiσ ) the
potential is w=ϕ=−2a sinσ , hence the derivative dϕ/dσ and the differential of the curvilin-
ear abscissa are expressed by the following equations

dϕ
dσ

=−2a cosσ, ds=−2a
v

cosσ dσ.

In view of the first equality, the condition (5) will be transformed as follows:

dβ
dσ

=−λ
[
v

v∞
+ (µ−1)

v∞
v

]
cosσ, λ= ρ v∞a

T
(6)

Let us write γ = −2βA/π ; then, the logarithmic function of the complex velocity ω =
i log

(
dw
v∞dz

)
=β+ i log

v

v∞
for the flow along a wall with a cusp in the form of a circular

segment can be obtained in exact analytical form

ω0 =2i log

(
(1+ iζ )2−γ − (1− iζ )2−γ

2i(2−γ )ζ(1+ ζ 2)−γ /2

)
. (7)

For double fixed points it is worth taking into account the behavior of the function at
stagnation points of the shell. Since the velocity vanishes at the vertex of an angle accord-
ing to |σ −π/2|γ and |σ −π/2| ≈ cosσ for σ →π/2 (σ <π/2), the condition (6) yields the
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asymptotic behavior for the derivative of the angle as

dβ
dσ

≈−λ
[
C
(π

2
−σ

)1+γ + µ−1
C

(π
2

−σ
)1−γ ]

, σ → π

2
−0,

where C is an constant.
Integrating and substituting the infinitesimal function cosσ instead of the equivalent

difference π/2−σ , we obtain the following asymptotic relationship

β≈βA+λ
[
C

2+γ cos2+γ σ + µ−1
C(2−γ ) cos2−γ σ

]
, σ → π

2
−0.

According to the last equality, one may chose the auxiliary function as

ω1 = iζ 2


B1

(
ζ 2 +1

2

)2−γ
+B2

(
ζ 2 +1

2

)2+γ
 . (8)

The unknown coefficients B1 and B2 are determined by satisfying condition (6):

B1 =− 1
21−γ − λ(µ−1)

χ(2−γ ) sin(βA)
, B2 = λχ

γ (2+γ ) sin(βA)
. (9)

The constant χ can be calculated by taking the limit σ →π/2 which leads to

χ = lim
σ→π/2

(
v

v∞
cos−γ σ

)
= exp

[ ∞∑
m=1

(−1)m c2m

]
2−γ

(
1−γ/2

)2 . (10)

Now the unknown function ω(ζ ) can be represented as a sum of three functions, one of
them being determined from the flow around a symmetric circle segment (7), the second from
the behavior of the derivative dβ/dσ (8), and the third function being an expansion in power
series, i.e.,

ω=ω0 +ω1 +ω2, (11)

where

ω2 = i
∞∑
m=1

c2mζ
2m. (12)

All hydrodynamic parameters may be calculated from the functions obtained above. The
unknown coefficients are calculated by a collocation method [14, 15]. Satisfying condition (6)
at the arc points σm= π

2
m
N
, (m=0, . . . ,N), we may calculate the coefficients c2m (m=1, . . . ,N)

and the parameter λ.
Some calculated results are depicted in the Figures 2–4. Figure 2 shows flexible shell

shapes with one fixed point for different µ. The shape for µ= 1 coincides with the exact
result obtained by McLeod [5]. The free boundary, as in the Joukovski and McLeod prob-
lems, deforms in the speed direction for decreasing µ, and both stagnation points A and B

coincide for µ=µ0 = 0·546. The shape can be calculated for all values of µ, but the bound-
aries self-intersect for µ<µ0. One of these corresponds to µ= 0 as shown in Figure 2. A
fluid particle on a streamline on the x-axis first reaches the stagnation point on the right and
then moves along a loop and passes into the second sheet of the z-plane, rounds the loop and
moves to the left stagnation point and then moves again along the x-axis. The limit µ→−∞
corresponds to an “unscrewed” circle. Of course, such a flow is impossible for µ<µ0, but can
be considered theoretically and calculated analytically.
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Figure 2. Shell shapes with one fixed point. Figure 3. Flexible shapes with two fixed points.

Figure 4. Two ways of taking the limit |µ|→∞.
Figure 5. Capillary waves on a restricted free surface
(µ=0).

Figure 3 presents shapes with two fixed points. The distance between two fixed points is
equal to l=2L/π where l is the diameter of the circle of length 2L. The shape may be con-
sidered as a flexible shell fixed on the edges of a slit in an infinite horizontal plate; the flow
is under half of the plate. Then, creating a certain pressure p0 on the other side of the plate,
we will obtain the shapes as depicted in Figure 3. If the pressure p0 approaches infinity, i.e.,
when µ→ ∞, the shape becomes a circle. We now have a flow around a circular cylinder,
but for µ→−∞ the case is equivalent to the flow along a wall with a circular hollow. For
µ=µ∗ =−0·92 the angles at the points A and B vanish. Computations show that continuously
changing µ from positive to negative infinity is impossible. Approaching zero from positive
values differs from the negative approach.

To clarify this phenomenon, the vertical force on the shell must be calculated as a function
of µ:

Cy(µ)= 2
ρ v2∞l

∫
AB

(p−p∞)dx.

Figure 4 shows two ways how this function changes from µ = ∞ and from µ = −∞.
The curves form a deformed double spiral with its center at the point µ= 0. If the angle
βA vanishes, the force coefficient Cy is equal to µ. Hence, the points of intersection on the
straight line Cy =µ in Figure 4 correspond to the angle βA=0; and the sign of βA alternates
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when moving along the curves 1 or 2 to the spiral center. Figure 3 shows the first three shapes
of the flexible shell for the same magnitude µ=0 (the curves n1, n2, n3 and m1, m2,m3 cor-
respond to the points on the lines 1 and 2 denoted by the same letters, respectively).

Closer to zero more waves of the shell surface appear, which can be considered as capillary
waves on a free boundary. The curves (n3) and (m3) show that the capillary waves resulting
from the nonlinear theory have slight wave troughs and steep but rounded wave crest. The
flow around the whole flexible shell with two fixed points is possible theoretically for µ>µ∗

only. In other cases the shape is a self-intersecting curve. The magnitude of µ∗ depends on
the ratio l/L and can be determined by calculation.

Analyzing the results depicted in Figure 3, one can conclude that the solution for fixed
value of βA=−π/2 considered above (Figure 2) is not unique. There is a sequence of forms
showing an increased number of waves for each value of βA (for µ<1). A fifth solution for
βA<0, µ=0 and L/l=1·2 is shown in Figure 5.

Such a shape may be approximated by a periodic function analogous to [7]. In this case it
is possible to obtain from a linear approximation the dependence of the Weber number We =
lρ v2∞/T on the wave number n [17]

Wen= π (2n−1+2γ )

1+L/l , n=1,2, . . . (13)

where γ is a phase shift that can be given approximately by the following function

γ = 1
8

+0·45

√
L

l
−1 sgn βA. (14)

These values correspond to different numbers of capillary half-waves filling the gap length l.
Values of 2/π ·Wen computed by Equation (13) for L/l=1·1 are presented in Table 1. The

differences � of the values 2/π · Wen obtained from the numerical solution of the nonlinear
problem and from (13) are given in the third column. These differences are rather moderate
and decrease when n increases.

4. Influence of capillarity on cavities

Because of the tension on a free surface, the boundary should be fixed at both ends, so that
the cavity flow can be investigated by using a cavitation model with an artificial solid bound-
ary at the end of the cavity. Consider the flow around a perpendicular plate with attached
cavity and perpendicular end plate (Figure 6). The statement of the problem of a cavitating
flow using a cavitation model with a plate end is similar to that considered in the previous
section.

Table 1. Comparison of approximated and exact solutions.

n 2/π ·Wen �

1 1·190 0·042
2 3·095 0·015
3 5·000 0·011
4 6·904 0·005
5 8·810 0·003
6 10·714 0·001
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Figure 6. Capillary waves on cavity surface. Figure 7. Cavity boundaries with capillary tension for
µ=−1 and for different numbers of waves.

The solution of the problem in the parametric ζ -plane could be represented as the sum
(11) with the same expansion (12) for the function ω2(ζ ). The solution for a cavitating flow,
without taking capillary tension into account, can be found by taking into account all the
singularities:

ω0 = i
2

log
ζ 2 +b2

b2(b2ζ 2 +1)
, (15)

where the points (ζ =±bi) correspond to the corners of the solid boundary.
Further, we should make an assumption about the angle of the free boundary at points

of detachment. Generally speaking, it should be given as a capillary angle between the free
boundary and the boundary of another material. Then another problem emerges concerning
the location of the detachment point; it can be on front face or the rear face, even if the solid
boundary is a plate with a sharp edge. This problem is discussed in [1] for the location of the
detachment point on a curvilinear surface.

Below, we assume the flow breaks away from the straight plate along its tangent. Then the
auxiliary function (8) cannot be valid. In [16] a function was suggested determining a solution
of a boundary-value problem with given imaginary part on the arc σ ∈ [0, π/2], namely

β1 =B1 cos2 σ sinσ,

which corresponds to the behavior of the function β(σ) close to σ =π/2. The odd additional
function is determined by the Schwarz integral

ω2 =−B1
4ζ 2

π

∫ π/2

0
cos2 σ sinσ

sin 2σ dσ
1−2ζ 2 cos 2σ + ζ 4

=

=B1
2
π


1

3
−
(

1+ ζ 2

2ζ

)2(
1+ ζ 2 −1

2iζ
log

1+ iζ
1− iζ

)
 . (16)

Satisfying the condition (6) at the detachment point (σ =π/2), one obtains the factor

B1 = λ

2

(
γ − 1−µ

γ

)
,

and an additional equation as follows

2
∞∑
m=1

m(−1)mc2m=−1+b2

1−b2
. (17)

The parameter b was chosen in correspondence with the solution of the cavitation problem
without tension
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b= 1√
1−µ. (18)

Moreover, the condition at infinity for the velocity and the condition (6) should be fulfilled.
The coefficients c2m were calculated by a collocation method as in the previous problem.

Numerical analysis shows that the free boundary for given µ (or for cavitation number
Q=−µ) could self-intersect (see Figure 3). Three non-self-intersecting cavity boundaries for
fixed cavitation number Q= 1 are depicted in Figure 7. One may observe that the deformed
free boundary approaches the boundary without capillary tension if the number of half waves
(n) tends to infinity (the Weber number We= lρ v2∞/T then goes to infinity too).

Comparing the shapes of free surfaces in cavitating flows with the shell shapes presented in
Figures 2 and 3, we see that every solution of a cavitation problem is induced by an appropri-
ate shell shape with βA=−π/2. Choosing such a shell with some half waves on it and contin-
uously increasing the vertical plate length from 0 to the value corresponding to (18), one can
obtain a cavity shape as shown in Figure 7. Moreover, it should be noted that complex shell
shapes with intersections transform into non-self-intersecting free boundaries. So, real capil-
lary flows at large Weber numbers have free surfaces with large numbers of small-amplitude
capillary waves.

5. The flow about a bubble in a channel

The solution of the problem is carried out by conformal mapping of the flow domain in the
z-plane onto a half-ring in the ζ -plane. The functions w(ζ ) (its region of variation for
bounded flow is a band) and z(ζ ) can be expressed as

w (ζ )= 2
π

log
1+ ζ
1− ζ ,

z= z0(ζ )+ z1(ζ )= 2
π
h

[
log

1+ ζ
1− ζ +

N∑
n=1

c2n−1

(
ζ 2n−1 + ζ−2n+1

)]
.

On the bubble surface condition (5) must be satisfied.
The problem is solved in the same manner as the previous ones. Results of a computation

are presented in the Section 8 below, and a comparison with axisymmetrical problem solu-
tions will be made.

6. Kirchhoff flow about a flexible shell

Consider a flow moving along the x-axis DA, then along a curvilinear wetted part of the shell
AC and a free semi-infinite cavity boundary CD (Figure 8). The other part of the shell CB is
a circular arc with radius R=T/(p0 −p∞), where p0 is the inner pressure, p∞ is the pressure
at infinity and also in the cavity. Capillary tension on the cavity boundary is neglected, so that
the velocity on the boundary has the constant value v∞. The condition (5) should be satis-
fied on the wetted shell surface AC. The direction of the velocity vector v∞ at left infinity
coincides with the negative x-axis. Extending symmetrically along the x-axis, we obtain the
flow around a flexible cylinder. The opening angle at a fixed point B, πγ =−2βA, has to be
calculated.
The complex potential can similarly be determined as

w= a

4

(
ζ + 1

ζ

)2

. (19)



Stationary two-dimensional inviscid flow 119

Figure 8. Kirchhoff flow around a flexible shell.

Hence, the potential on the circle (ζ = eiσ ) is equal to a cos2 σ and its derivative dϕ/dσ =
−a sin 2σ . Thus, the differential of the curvilinear abscissa is

ds=−a
v

sin 2σ dσ. (20)

It follows that the condition on flexible shell differs from (6) by a factor sinσ only.
The logarithmic function of the complex velocity can be represented as before by the sum

(11), where

ω0 =γ i log
1+ iζ
1− iζ

, (21)

ω1 =λζ

B1

(
ζ 2 +1

2

)2−γ
+B2

(
ζ 2 +1

2

)2+γ
 , λ= ρ v∞a

T
, (22)

ω2 =
∞∑
m=0

c2m+1ζ
2m+1. (23)

The function (21) describes the flow around a wedge with attached Kirchhoff cavity; the
function (22) captures the behavior of the complex velocity close to the point A (σ =π/2).
The factors B1 and B2 are determined by satisfying the condition when approaching the
point A:

B1 =− µ−1
(2−γ )χ sinπγ/2

, B2 = χ

(2+γ ) sinπγ/2
. (24)

The unknown parameter χ can be calculated as χ = limσ→π/2 (v/v∞ cosγ σ ). With regard to
the transformation z(σ ) it can be expressed as

logχ =−γ +
∞∑
m=0

(−1)mc2m+1. (25)

Besides, the Brillouin condition at the detachment point C (σ =0) should be satisfied as fol-
lows:

∞∑
m=0

(2m+1)c2m+1 +λ [B1(3−γ )+B2(3+γ )]−γ =0. (26)
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The unknown coefficients are calculated by satisfying the condition (6) by a collocation
method in the same manner as was done above. The drag of the shell is expressed as

D= πρv∞a
4

[
−2γ + c1 +λ

(
B1

22−γ + B2

22+γ

)]2

. (27)

If the distance between two fixed points is given as the ratio l/L, then the tangent angle
at point B is determined using this ratio. For one fixed point A, the tangent angle at point
B is equal to π/2; the distance l/L is to be found.

For some values of µ the shapes of the flexible shell are depicted in Figure 9. The shape
varies only little for µ∈ [1, ∞), and becomes a multi-valued function when the parameter µ
decreases. Indeed, a shell with two fixed points and L/l=π/2 can have five different shapes
for the same µ=0·6 (the curves a–e in Figure 9b), and if one point is fixed, it can have four
different shapes for the same µ= 0·5 (the curves a–d in the Figure 9a). If the shell has a
closed cylindrical shape, the boundary cannot intersect the dashed straight line y=0, so that
the only possible shape is the curve a.

7. Kirchhoff flow between a flexible shell and a linear wall

Consider a Kirchhoff flow restricted by a horizontal wall (Figure 10a). The problem is solved
using conformal mapping onto a quarter-disc of the ζ -plane (Figure 10b).

The complex potential (the domain, corresponding to the flow, is a band) can be given as

w= a

π
log

[(
ζ + 1

ζ

)2

+
(
p+ 1

p

)2
]
, (28)

Figure 9. Shapes of a flexible shell: (a) single fixed point (the lines a–d correspond to µ=0·5); (b) two fixed points
(lines a–e correspond to µ=0·6).

Figure 10. The flow about a flexible shell near a wall.
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where a is the flux and p is the image of point P. Then the boundary condition (5) takes the
form

dβ
dσ

=− λ

2π

[
v

v∞
+ (µ−1)

v∞
v

]
sin 2σ

cos2 σ + 1
4

(
1
p

−p
)2
, λ= ρ v∞a

T
. (29)

The logarithmic function of the complex velocity can be represented by the sum (11) of
the functions (21)–(23). However, using this method, one may compute the flow near the wall
with a too large gap between the shell and the wall. For calculating a small gap, a different

parametric plane is used, namely τ =
√(
ζ 2 +p2

)/(
p2ζ 2 +1

)
. In this case the image of point

P passes to 0 and that of point S to the real point s=p. Then, in addition to the sum (11),
another expression is used

ω3 =
√
s2 − τ 2

s2τ 2 −1

∞∑
m=1

b2mτ
2m.

The boundary condition (29) is fulfilled at the collocation points ζ = eiσm and τ = eiξm for a
better approximation of the solution near the critical point A and near the separation point C.

The parameters of the flow and the shell were investigated at different positions of the sep-
aration point on the shell surface, which is specified by the ratio of the wetted part of the
shell LC and the shell length L. Then, at the detachment point, the Brillouin condition (26)
is fulfilled when the value LC is taken to be L0.

Special attention is paid to the shell approaching the wall. The distance between shell and
wall is specified by the ratio 	Q of the flux a and the chord length AB. When 	Q→0, the shell
transforms to a surface consisting of two circular arcs (in Figure 10a this shape is depicted
for LC =L0). As LC <L0, the nonwetted part of the shell crosses the wall. The limiting form
and corresponding branches of the parameter dependencies for LC >L0 are obtained under
the assumption that in the touching point a source and a sink are formed with infinitesimal
intensity, so that a finite vertical force is exerted on the shell.

In Figure 11 the dimensionless tension dependencies 	T (the ratio of the tension of the
shell with flow to the tension without flow, when the shell shape is a circular arc) on LC/L

are shown. One can see that for LC =L0 the tension has a minimal value. As the calcula-
tions show, dependencies of the other parameters on LC/L also have an extremal character
for LC =L0.

In flows that separate from the shell, the position of the point of detachment influences
the flow parameters and the shell shape. But there is a similarity between two types of flows:
namely those with separation and those without it. Every solution with a definite number of
waves of one type corresponds to an analogous solution of the other type.

8. Axisymmetric flow past a flexible bubble

Using the Polozhii integral transformations [25, Chapter 2], we may express the potential ϕ
and the stream function ψ of the axisymmetric flow in terms of an analytic function f (z) of
a complex variable z by the formulas

ϕ (x0, r)=−Im

∫ x0+ir

x1+i0
f (z)

dz
g (z)

, ψ (x0, r)=Im

∫ x0+ir

x1+i0
f (z)

z−x0

g (z)
dz. (30,31)

Here g (z)=√
(z− z0) (z− z0), where z0 =x0 + ir is an interior point of the flow; x1 + i0 is some

point on the x-axis (axis of symmerty); z0 =x0 − ir.
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If we introduce the dimensionless parameter µ (2) and the Weber number as We =
ρv2∞L/2T (L is the length of a generating line of the axisymmetric surface), then condition
(3) may be represented as follows:

L

(
−dβ

ds
+ cos β

y

)
=We

(
µ−1+ v2

v2∞

)
. (32)

Moreover, on the bubble surface the kinematic condition should be satisfied for the stream
function as

�=v∞ y2

2
+ψ=0. (33)

As in the plane case, the solution of the problem may be found more easily in parametric
form by a conformal mapping of the flow region in the axial plane z onto the exterior of the
unit disk in the auxiliary plane ζ . Allowing for the symmetry about the coordinate axes, we
may represent the transformation z(ζ ) and the required analytic function f (ζ ) in (30), (31) in
the series form:

z=L
(
a0ζ +

∞∑
m=0

a2m+1

ζ 2m+1

)
, f =Lv∞

∞∑
m=1

b2m

ζ 2m
(34)

with real coefficients a0, a2m+1, b2m.
At the critical points to the left and right of the bubble the condition df/dx=±2v∞/π

must be fulfilled. By substituting the functions z and f in (34) and setting ζ =±1, we obtain
the equation

∞∑
m=1

2mb2m− 2
π

(
a0 −

∑
(2m+1)a2m+1

)
=0. (35)

On the circle ζ = eiσ the real and imaginary parts of the functions z and f are equal to

x=L
[
a0 cosσ +

∞∑
m=0

a2m+1 cos(2m+1)σ

]
, y=L

[
a0 sinσ −

∞∑
m=0

a2m+1 sin(2m+1)σ

]
,

(36)

u=Lv∞
∞∑
m=1

b2m cos 2mσ, v=−Lv∞
∞∑
m=1

b2m sin 2mσ. (37)

The length of the generator for the axisymmetric bubble is equal to

L=
∫ π

0
s′(σ )dσ , s′(σ )=

√(
dx(σ )

dσ

)2

+
(

dy(σ )
dσ

)2

.

In order to determine the coefficients a2m+1 and b2m, it is necessary to satisfy simulta-
neously Equation (32) and the kinematic condition (33), which we should express in terms
of the variable σ by using the integrals (30) and (31), and the following expressions:

cosβ= x′(σ )
s′(σ )

,
dβ
ds

=−y
′′(σ )x′(σ )−x′′(σ )y′(σ )

(s′(σ ))3
. (38)

Hence, at the stagnation point σ =0, condition (32) takes the form:

2Lx′′(0)
y′2(0)

+We(µ−1)=0. (39)
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Figure 11. Shell-tension dependencies on the wetted
surface length.

Figure 12. Shapes of a bubble and a flexible cylinder.

For the numerical calculations a collocation method may be used, i.e., the conditions (32)
and (33) are satisfied at the discrete points σk = πk/2N , k= 1, . . . ,N and, in addition, the
equalities (35) and (39) are fulfilled. The system of 2N + 2 nonlinear equations was solved
numerically with respect to the Weber number We, the coefficient a0, the first N coefficients
a2m+1 and the N coefficients b2m. All the other coefficients of the sums are assumed to be
equal to zero. The parameter µ is assumed to be given. In going over to dimensionless vari-
ables, the length of the generator L and the velocity v∞ are no longer present explicitly.

The results of the numerical calculations are shown in Figure 12, where the continuous
curves correspond to the axisymmetric, and the broken curves to the cylindrical shape (plane
flow). The curves 1–4 correspond to µ= 5, 1, 0·681 and 0, respectively, and the curves 5–7
correspond to µ=0·546, 1 and 5. The lines 3 and 5 are in contact at the stagnation points. In
a real fluid this could lead to the formation of toroidal bubbles or to bubble collapse and the
formation new bubbles. Curve 6 for plane flow coincides with the exact solution obtained in
[5]. Curve 4 as in plane flow (Figure 12) represents a self-intersecting surface and, of course,
cannot be realized. It is of theoretical interest only.

Numerical analysis [26, 27] shows that the change in the configuration of the axisymmet-
ric bubble is similar to the change in the configuration of the plane one. As the parameter µ
decreases, contraction in the direction of flow and expansion in the transverse direction are
observed. When µ< 0·681 (in the plane case µ< 0·546) the bubble boundaries self-intersect,
which corresponds to the flow on a two-sheeted surface. In particular, when µ=0·548 (for the
plane bubble when µ=0·441), the volume of the bubble as calculated theoretically is equal to
zero.

Here solutions with one half-wave are investigated, but it is obvious that other kinds of
axisymmetric solution, as shown in Figure 5, can exist.

9. Axisymmetric flow past a flexible bubble in a tube

The problem is solved by mapping the flow domain of the z-plane conformally onto a half-
ring in the ζ -plane. The functions z(ζ ) and f (ζ ) can be expressed as

z= z0(ζ )+ z1(ζ )= 2
π
h

[
log

1+ ζ
1− ζ +

N∑
n=1

a2n−1

(
ζ 2n−1 + ζ−2n+1

)]
, (40)
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f =f0(ζ )+f1(ζ )=A ζ

ζ 2 −1
+

M∑
n=1

b−2nζ
−2n+

M∑
n=0

b2n+1ζ
2n+1. (41)

Assuming the flow to be symmetrical relative to the plane x=0, we have to use modified
transformations (1), (2)

�(z)=Im

{∫ z

xA+i0
f (z)

dζ√
(ζ − z) (ζ − z) −

∫ −z

xA+i0
f (z)

dζ√
(ζ + z) (ζ + z)

}
, (42)

�(z)=−Im

{∫ z

xA+i0
f (z)

(ζ −x)dζ√
(ζ − z) (ζ − z) +

∫ −z

xA+i0
f (z)

(ζ +x)dζ√
(ζ + z) (ζ + z)

}
, (43)

where xA+ i0 is some point on the x-axis. On the bubble surface conditions (32), (33) must
be satisfied, on the surface of the cylindrical tube the stream function is �=V∞h2/2, where
h is the radius of the tube.

Figure 13 shows bubble shapes for different µ and two values of the ratio πh/L =
π/2, 1·75 for generator length L= π . This illustrates the closeness of the shapes of plane
and axisymmetric bubbles. The curves on the right of the y-axis are bubbles for axisymmet-
ric flows, whereas those on the left correspond to plane flow. Bubble shapes 1–6 in Figure 13a
correspond to µ= 14, 5·5, 5, 7, 8·5 and 9, respectively, and curves 1–3 in Figure 13b corre-
spond to µ=3, 1, 5, 0. Figure 13a shows two kinds of bubble shapes (1) for plane flow.

Dependencies of the radial bubble dimension d̄=πd/L on the parameter µ are shown in
Figure 14. Solid lines correspond to axisymmetric bubbles, the dashed to the plane ones men-
tioned above. Curves 1–6 correspond to πh/L=∞, 1·75, 1·6, 1·585, π/2, 1·5. Note that only
solution branches extendable to µ→∞ are depicted.

Figure 13. Bubble shapes for different Weber number and two ratios of h/L: (a) πh/L=π/2; (b) πh/L=1·75.

Figure 14. Dependence of radial bubble dimension on the parameter µ for the flow over a bubble in a channel and
a tube.
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We note that the exact solution of Joukovski [4] is a special case
(
πh/L=π√

µ−1/2,

d= µ

2
√
µ−1

arctan 2
√
µ−1
µ−2

)
of such flows and can be successfully used for testing the numeri-

cal solutions. In Figure 14 this solution (dash-dotted line) is denoted by the letter J .
The calculations show that, for rather large bubbles (πh/L≤π/2), two different solutions

exist for a single value of µ, if µ>µ∗(h/L). The bubble with the greater 	d is subjected essen-
tially to a sucking influence of the tube surface because the small gap between the bubble
surface and the tube induces a large fluid velocity and a low pressure. When µ→∞, such a
bubble transforms into a surface consisting of two spherical segments touching the tube. In
the touching circle a ring source and sink are formed.

A comparison of the solutions of the axisymmetric problem and the plane ones shows
the following. The deformation of an axisymmetric bubble resulting from a pressure variation
inside the bubble is similar to that of the plane case. The bubble is compressed in the flow
direction and stretches cross-wise. The ratio of the width to the length usually is somewhat
larger for an axisymmetric bubble. The investigation shows that the influence of the tube wall
on bubble shape is essentially less for an axisymmetric flow, than for a plane flow. This can
be explained as follows. The velocity at the mid-point in a plane flow is approximately two
times as large if the clearance between the bubble surface and the tube wall is small. Thus
the pressure decreases here and the sucking influence of the flow increases.

Axisymmetrical bubbles with two fixed points can be considered as well, but the entire
force of interaction in these points will be equal to zero.

10. Conclusions

In this paper we have described solutions of plane and axisymmetric problems concerning
flows about flexible shells. We note that all these problems could be calculated without any
auxiliary singular functions, but then the series coefficients would converge much more slowly.
Investigations show that all these problems, in spite of their differences, have similar features.

Every described problem has a range of solutions. If the angle in the front stagnation
point does not change, a sequence of different types of solutions exists for µ< 1 with an
increasing number of half waves on the shell. If this angle can change, as in the case of shells
with fixed points, the sequence of solutions is broken up into two branches. One of these can
be extended to µ=∞, the other to µ=−∞.

For the majority of problems only the one-half-wave solution is physically realizable. But
in cavitational flow the shape of the cavity corresponding to this solution is self-intersecting.
Shapes with more then 4–5 half-waves do not have self-intersections.

Concerning flows with separation from the shell surface it has to be noted that the depen-
dencies of tension, drag, etc. on the position of the detachment point have an extremum when
the Brillouin condition is fulfilled (when the curvature of the free surface at the detachment
point has a finite value).

When the wall restricts the flow, a sucking force influences the shell. The shell stretches in
the transverse direction and the gap between the shell and the wall can vanish. However, flow
closing does not take place, because a sink appears at the point of contact.

These parameters (the detachment point position and the distance to the wall), as well as
the parameter µ determine the shape of the shell and the flow properties.
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